ECE 627 MAKE-UP PROJECT

By Sameer Somvanshi

ID: 931732943

1. The input of the modulator shown may be 75% of full scale. The quantizer Q has N levels.
a. What is the largest possible input to Q ?
b. What is the minimum number of levels N if Q is not to overload?

Solution:
$\mathrm{v}=\mathrm{e}+\mathrm{u}+\left(2 \mathrm{I}+\mathrm{I}^{2}\right)(\mathrm{u}-\mathrm{v})$
$\left(1+2 \mathrm{I}+\mathrm{I}^{2}\right) \mathrm{v}=\left(1+\mathrm{I}^{2}\right) \mathrm{v}=\left(1+\mathrm{I}^{2}\right) \mathrm{u}+\mathrm{e}$
$(1+\mathrm{I})^{2}=\left[1+\frac{1}{z-1}\right]^{2}=\frac{1}{\left(1-z^{-1}\right)^{2}}$
$\mathrm{v}=\mathrm{u}+\left(1-z^{-1}\right)^{2} \mathrm{e}=\mathrm{u}+\mathrm{e}-2 \mathrm{z}^{-1} \mathrm{e}+\mathrm{z}^{-2} \mathrm{e}$
$\mathrm{v}(\mathrm{n})=\mathrm{u}(\mathrm{n})+\mathrm{e}(\mathrm{n})-2 \mathrm{e}(\mathrm{n}-1)+\mathrm{e}(\mathrm{n}-2)$
$|y(n)|_{\max }=|\mathrm{u}(\mathrm{n})|_{\text {max }}+3|\mathrm{e}(\mathrm{n})|_{\text {max }}$
Assume $\mathrm{FS}=\mathrm{V}_{\text {ref }}=((\mathrm{N}-1) / 2) \mathrm{V}_{\mathrm{LSB}}$
$(\mathrm{N}-1)$ is the number of steps
$|\mathrm{u}|_{\text {max }}=(3 / 4) \mathrm{V}_{\text {ref }}=3(\mathrm{~N}-1) / 2 \mathrm{~V}_{\mathrm{LSB}}$
$|\mathrm{e}|_{\text {max }}=\mathrm{V}_{\mathrm{LSB}} / 2$

Linear input range : $|\mathrm{y}(\mathrm{n})|<=(\mathrm{N} / 2) \mathrm{V}_{\text {LSB }}$
$(\mathrm{N} / 2) \mathrm{V}_{\mathrm{LSB}}>=3 / 8(\mathrm{~N}-1) \mathrm{V}_{\mathrm{LSB}}+(3 / 2) \mathrm{V}_{\mathrm{LSB}}$
Thus,
$\mathrm{N}>=9$
2. Consider a cascaded 2-0 delta-sigma ADC given in following figure. Derive the STF and NTF of the ADC using its linearized model

Figure 1. Cascaded 2-0 delta-sigma ADC

Figure 2. Linearized model of the cascaded 2-0 delta-sigma ADC

Solution:

$$
\begin{aligned}
& \mathrm{v} 1=\mathrm{k} 1 * \mathrm{a} 2 * \frac{z^{-1}}{1-z^{-1}}\left(-\mathrm{b} 2 * \mathrm{v} 1+\mathrm{a} 1 * \frac{z^{-1}}{1-\mathrm{z}^{-1}}(-\mathrm{b} 1 * \mathrm{v} 1+\mathrm{u} 1)\right)+\mathrm{q} 1 \\
& \mathrm{v}(\mathrm{z})=\frac{a 1 * a 2 * \mathrm{k} 1 * \mathrm{z}-2 * \mathrm{u} 1+\left(1-\mathrm{z}^{-1}\right)^{2} q 1}{1+(a 2 * b 2 * k 1-2) z^{-1}+(1-a 2 * b 2 * k 1+a 1 * a 2 * b 1 * k 1) z^{-2}} \\
& \mathrm{a} 1=1 / 4, \mathrm{a} 2=1 / 2, \mathrm{~b} 1=1, \mathrm{~b} 2=1 / 2, \mathrm{k} 1=1 /(\mathrm{a} 1 * \mathrm{a} 2 * \mathrm{~b} 1)=8 \\
& \mathrm{v} 1(\mathrm{z})=z^{-2} \mathrm{u} 1+\left(1-z^{-1}\right)^{2} * \mathrm{q} 1
\end{aligned}
$$

Second stage:

$$
\begin{aligned}
& \mathrm{U} 2 \mathrm{a}=\alpha^{*} \mathrm{Ti} 2-\beta(\mathrm{K} 1 * \mathrm{Ti} 1+\mathrm{q} 1) \\
& \mathrm{U} 2 \mathrm{a}=\left(\alpha-\beta \mathrm{K}_{1}\right) * \mathrm{Ti} 2-\beta^{*} \mathrm{q} 1
\end{aligned}
$$

$$
\alpha=8, \beta=1, k 1=8, \text { So } U 2 a=-q 1
$$

$$
\mathrm{v} 2=\mathrm{m} 0 * \mathrm{k} 2 * \mathrm{u} 2 \mathrm{a}+\mathrm{q} 2
$$

$$
\mathrm{vc}=\mathrm{m} 0 * \mathrm{~m} 2 * \mathrm{k} 2 *\left(1-z^{-1}\right)^{2} *(-\mathrm{q} 1)+\mathrm{m} 2 *\left(1-z^{-1}\right)^{2} * \mathrm{q} 2
$$

$$
\mathrm{vc}=-\left(1-z^{-1}\right)^{2} * \mathrm{q} 1+\mathrm{m} 2 *\left(1-z^{-1}\right)^{2} * \mathrm{q} 2
$$

$$
\mathrm{v} 1=+\left(1-z^{-1}\right)^{2} * \mathrm{q} 1+\mathrm{z}^{-2} * \mathrm{u} 1
$$

Thus,
$\mathrm{vm}=\mathrm{z}^{-2} * \mathrm{u} 1+\mathrm{m} 2 *\left(1-\mathrm{z}^{-1}\right)^{2} * \mathrm{q} 2$

STF $=z^{-2}$
$\mathrm{NTF}=\mathrm{m} 2 *\left(1-z^{-1}\right)^{2}$
Thus the quantization error of first stage is eliminated.
However, delta sigma modulator is very sensitive to imperfections. So q1 is never eliminated.

